collections/collection.go

379 lines
7.9 KiB
Go

package collections
import (
"reflect"
"sort"
"sync"
"sync/atomic"
"pkg.icikowski.pl/collections/functions"
)
// Collection represents the collection of data.
//
// By default, the collection uses parallel implementation of operators.
type Collection[T any] struct {
data []T
parallel bool
}
// Count counts values in the collection.
func (s *Collection[T]) Count() int {
return len(s.data)
}
// Epty determines whether the collection is empty.
func (s *Collection[T]) Empty() bool {
return len(s.data) == 0
}
// Parallel sets the collection to use parallel implementation of operators.
func (s *Collection[T]) Parallel() *Collection[T] {
s.parallel = true
return s
}
// Sequential sets the collection to use sequential implementation of operators.
func (s *Collection[T]) Sequential() *Collection[T] {
s.parallel = false
return s
}
func (s *Collection[T]) filterParallel(p functions.Predicate[T]) *Collection[T] {
processed := []T{}
mux := sync.Mutex{}
wg := sync.WaitGroup{}
wg.Add(len(s.data))
for _, e := range s.data {
e := e
go func() {
defer wg.Done()
if p(e) {
mux.Lock()
defer mux.Unlock()
processed = append(processed, e)
}
}()
}
wg.Wait()
s.data = processed
return s
}
func (s *Collection[T]) filterSequential(p functions.Predicate[T]) *Collection[T] {
processed := []T{}
for _, e := range s.data {
if p(e) {
processed = append(processed, e)
}
}
s.data = processed
return s
}
// Filter filters the collection using given [functions.Predicate].
func (s *Collection[T]) Filter(p functions.Predicate[T]) *Collection[T] {
if s.parallel {
return s.filterParallel(p)
}
return s.filterSequential(p)
}
func (s *Collection[T]) allMatchParallel(p functions.Predicate[T]) bool {
wg := sync.WaitGroup{}
state := atomic.Bool{}
wg.Add(len(s.data))
state.Store(true)
for _, e := range s.data {
if !state.Load() {
break
}
e := e
go func() {
defer wg.Done()
if state.Load() && !p(e) {
state.Store(false)
}
}()
}
return state.Load()
}
func (s *Collection[T]) allMatchSequential(p functions.Predicate[T]) bool {
for _, e := range s.data {
if !p(e) {
return false
}
}
return true
}
// AllMatch checks whether all elements in collection match given [functions.Predicate].
func (s *Collection[T]) AllMatch(p functions.Predicate[T]) bool {
if s.parallel {
return s.allMatchParallel(p)
}
return s.allMatchSequential(p)
}
func (s *Collection[T]) anyMatchParallel(p functions.Predicate[T]) bool {
wg := sync.WaitGroup{}
state := atomic.Bool{}
wg.Add(len(s.data))
state.Store(false)
for _, e := range s.data {
if state.Load() {
break
}
e := e
go func() {
defer wg.Done()
if state.Load() && p(e) {
state.Store(true)
}
}()
}
return state.Load()
}
func (s *Collection[T]) anyMatchSequential(p functions.Predicate[T]) bool {
for _, e := range s.data {
if p(e) {
return true
}
}
return false
}
// AnyMatch checks whether any elements in collection match given [functions.Predicate].
func (s *Collection[T]) AnyMatch(p functions.Predicate[T]) bool {
if s.parallel {
return s.anyMatchParallel(p)
}
return s.anyMatchSequential(p)
}
func (s *Collection[T]) noneMatchParallel(p functions.Predicate[T]) bool {
wg := sync.WaitGroup{}
state := atomic.Bool{}
wg.Add(len(s.data))
state.Store(true)
for _, e := range s.data {
if !state.Load() {
break
}
e := e
go func() {
defer wg.Done()
if state.Load() && p(e) {
state.Store(false)
}
}()
}
return state.Load()
}
func (s *Collection[T]) noneMatchSequential(p functions.Predicate[T]) bool {
for _, e := range s.data {
if p(e) {
return false
}
}
return true
}
// NoneMatch checks whether no elements in collection match given [functions.Predicate].
func (s *Collection[T]) NoneMatch(p functions.Predicate[T]) bool {
if s.parallel {
return s.noneMatchParallel(p)
}
return s.noneMatchSequential(p)
}
// Sorted sorts the collection using given [functions.Comparator].
func (s *Collection[T]) Sorted(c functions.Comparator[T]) *Collection[T] {
sort.SliceStable(s.data, func(i, j int) bool {
return c(s.data[i], s.data[j])
})
return s
}
func (s *Collection[T]) peekParallel(c functions.Consumer[T]) *Collection[T] {
wg := sync.WaitGroup{}
wg.Add(len(s.data))
for _, e := range s.data {
e := e
go func() {
defer wg.Done()
c(e)
}()
}
wg.Wait()
return s
}
func (s *Collection[T]) peekSequential(c functions.Consumer[T]) *Collection[T] {
for _, e := range s.data {
c(e)
}
return s
}
// Peek executes given [function.Consumer] on every value in collections.
func (s *Collection[T]) Peek(c functions.Consumer[T]) *Collection[T] {
if s.parallel {
return s.peekParallel(c)
}
return s.peekSequential(c)
}
func (s *Collection[T]) transformParallel(u functions.UnaryOperator[T]) *Collection[T] {
processed := make([]T, len(s.data))
wg := sync.WaitGroup{}
wg.Add(len(s.data))
for i, e := range s.data {
i, e := i, e
go func() {
defer wg.Done()
processed[i] = u(e)
}()
}
wg.Wait()
s.data = processed
return s
}
func (s *Collection[T]) transformSequential(u functions.UnaryOperator[T]) *Collection[T] {
processed := []T{}
for _, e := range s.data {
processed = append(processed, u(e))
}
s.data = processed
return s
}
// Transform transforms all values in collection using given [functions.UnaryOperator].
func (s *Collection[T]) Transform(u functions.UnaryOperator[T]) *Collection[T] {
if s.parallel {
return s.transformParallel(u)
}
return s.transformSequential(u)
}
// Reduce reduces values in given collection using given [functions.BinaryOperator].
func (s *Collection[T]) Reduce(b functions.BinaryOperator[T]) T {
processed := *new(T)
if len(s.data) == 0 {
processed = s.data[0]
}
for _, e := range s.data[1:] {
processed = b(processed, e)
}
return processed
}
// Limit limits the collection to given number of values.
func (s *Collection[T]) Limit(n int) *Collection[T] {
if len(s.data) < n {
return s
}
if n < 0 {
n = 0
}
s.data = s.data[:n]
return s
}
// Skip skips given number of values in the collection.
func (s *Collection[T]) Skip(n int) *Collection[T] {
if len(s.data) == 0 {
return s
}
if n > len(s.data) {
n = len(s.data)
}
s.data = s.data[n:]
return s
}
// FindFirst returns [Optional] with first item of the collection.
func (s *Collection[T]) FindFirst() *Optional[T] {
e, present := *new(T), false
if len(s.data) != 0 {
e, present = s.data[0], true
}
return &Optional[T]{e, present}
}
// FindFirst returns [Optional] with last item of the collection.
func (s *Collection[T]) FindLast() *Optional[T] {
e, present := *new(T), false
if len(s.data) != 0 {
e, present = s.data[len(s.data)-1], true
}
return &Optional[T]{e, present}
}
// Min returns the lowest value from the collection using given [functions.Comparator].
func (s *Collection[T]) Min(c functions.Comparator[T]) *Optional[T] {
return s.Sorted(c).FindFirst()
}
// Max returns the highest value from the collection using given [functions.Comparator].
func (s *Collection[T]) Max(c functions.Comparator[T]) *Optional[T] {
return s.Sorted(c).FindLast()
}
// Distinct ensures that all elements in the collecion are unique.
func (s *Collection[T]) Distinct() *Collection[T] {
processed := []T{}
for i := 0; i < len(s.data); i++ {
hasCopy := false
for j := i + 1; j < len(s.data); j++ {
if reflect.DeepEqual(s.data[i], s.data[j]) {
hasCopy = true
break
}
}
if !hasCopy {
processed = append(processed, s.data[i])
}
}
s.data = processed
return s
}
// MapCollection maps collection of values of type T to collection of values of type U using given [functions.Function].
func MapCollection[T, U any](src *Collection[T], mapper functions.Function[T, U]) *Collection[U] {
data := []U{}
for _, e := range src.data {
data = append(data, mapper(e))
}
return &Collection[U]{data, src.parallel}
}
// Collect returns all items from collection as a slice.
func (s *Collection[T]) Collect() []T {
return s.data
}